|
|
|
↑↑ 22년 1월~23년 6월, 17개 시·도 버스 하차태그율.<국토부 제공> |
|
그동안 많은 지자체에서 민원, 의회 요구 등에 의한 관행적 버스 노선개편이, 이젠 AI를 통한 과학적 정보 분석을 통해 이뤄지게 된다.
그간 버스 단일요금제를 시행하는 지자체에서는 버스를 탑승할 때 교통카드를 태그 하는 방식으로 요금을 지불하고 있어, 승차정보에 대한 데이터는 있지만, 하차 시에는 태그를 건너뛰는 경우가 많아 하차정보 데이터를 수집하는 데 어려움을 겪어 왔다.
이 경우 하차정보 부족에 따라 수요가 없는 곳에 버스정류장이 새롭게 들어서거나 불필요한 버스노선 연장·변경 등으로 시민 불편은 물론, 버스 회사운영비 부담이 가중돼 세금 낭비라는 지적도 제기돼 왔다.
이의 개선을 위해 행정안전부(이하 행안부)와 부산시가 합리적 대중교통 노선개편 지원을 위한 ‘AI기반 승객하차정보 추정 분석 모델’개발을 완료했다.
이번에 개발된 모델은 승객 하차지점과 하차인원 추정을 통해 실제와 가까운 교통 수요량을 산출하고, 대중교통 잠재수요를 찾아내는 것을 주요 기능으로 설계했다.
모델개발 과정에는 교통카드 사용이력 데이터, 통신사 유동인구 데이터, 신용카드 사용데이터 등 약 3억 건의 공공·민간 데이터를 활용했다.
이런 3가지 분석 모형을 단계적으로 적용해 노선 정류장별 하차 인원을 99%까지 추정하고, 대중교통 잠재수요까지 파악할 수 있었다.
이 같은 단계별 분석 결과를 토대로 정류장별, 교통유형별 실제 이용자 규모를 산출하고, 통신사 유동인구 데이터, 신용카드 사용데이터 등을 활용하여 교통 잠재수요까지 도출했다. 이는 기존 운영노선의 합리성 평가와 심야 버스 노선개설 등에 활용할 수 있다.
행안부는 이번에 개발된 모델이 지자체별 과학적 노선개편 과정에 널리 활용될 것으로 기대하고 있다.
김준희 행안부 공공데이터국장은 “그동안 파악이 어려웠던 승객규모를 데이터 분석을 통해 찾아냄으로써 과학적 교통정책의 토대를 마련했다는 측면에서 의미가 크다”며, “앞으로도 데이터를 통해 행정역량을 높이고 국민의 생활이 실질적으로 변화할 수 있도록 노력하겠다”고 말했다.